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ABSTRACT

Surrogate road safepproachess part of road improvement programave gained traction in recent
years. Thanks to emerging technologies such as coragsien and clouecomputing, surrogate methods
allow for proactive scanning and detectiorsafety issues and addreberm before collisions and injuries
occur. The objective of this paper is to propose an automated and continuous monitoring approach for
road network screening using connected video cameras and ebeleed computing analytics platform

for largescale vigo processing. Using the wide network of traffic cameras from cities, the proposed
approach aims to leverage video footage to extract critical data road network screening (ranking and
selection of dangerous locations). Using the City of Bellevue as aicatpt environment, different

safety metrics are automatically generated in the platform such as traffic exposure metrics, frequency of
speedingeventsasnd conflict rates. Using Bellevueds camer
demonstrated using a spla of 40 cameras and intersections. The results and platform provide a
proactive tool that can constantly look for dangerous locations and risk contributing factors. This paper
provides the details of the proposed approach and the results of its impitomemirections for future

work are also discussed.

Keywords: Computer vision, videdased traffic monitoring, network screening, surrogate safety, vision
zero
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INTRODUCTION

Road safety has been a fundamental concern globally, costingouosties around 3% of their
gross domestic product. Road crashes kill approximately 1.35 million people annually, placing them in
the top ten causes of death, and making them the leadirgdisease cause of death wewile. More
than half of these deatlare among vulnerable road users, making them more higtiyisk the United
States, the annual death rate due to road crashes is 38,000 (resulting in 12.4 deaths per 10,000
inhabitants). 4.4 million additional road users have injuries requiring mextteation. This amounts to
$871 billion in societal and economic costs, making the United States the most affectied drg
country by the consequences of crashes. In addition, the number of pedestrian and cyclist fatalities have
been on the rise sind®90(2).

In response to these road safety concerns, many cities have adopted road safety programs to
achieve Vision Zero. One of the main goals of Vision Zero is to eliminate traffic fataliieseaious
injuries to ensure that all road users can safely move around their communities. This concept was
introduced in 1995 and has since been adopted in 24 countrieswidelénd in over 40 cities in the
United States alon@). Vision Zero recognizes that road users make mistakes or can bentedfwith
dangerous situations and that public roads should be designed to acconfordgtiase modes of
failured in the jargon of safe systems engineering, public roads shotgdilbéolerant

Two major components of the program include managingtsafels and collecting, analyzing,
and using data to understand the causes of traffic deaths and their effects. This requires the establishment
of safety programs and goals that include educational, enforcement, and engineering countermeasures.
This implanentation requires following the road safety management process (RSMP) which offers a
systematic approach to the site identification, improvement selection, and evaldiafidre process
starts with a network screening process to determine the locations of interest. Once the locations are
selected, diagnosis is performed to identify the eradhcontributing factors in order then select the
proper countermeasures. A ctigtnefit analysis is then performed, and projects are prioritized. Finally,
safety effectiveness evaluations are performed at multiple lew#ighe project level, countermeasure
level, and/or program levéb).

Several steps in the RSMP are currently heavily reliant on the use of crash data. This creates a
significant obstacle for achieving Vision Zero, due to the long time required to obtain this data, in
addition to the issues surrounding data gaps, uregenting, crossgjurisdictional inconsistencies, and the
ethical concerns with acting on crashes only after they happen. This necessitates the use of more proactive
measures, known as surrogate safety measures. These measures are used to reflect théeonirent sta
road safety by providing information on crash 1€k Due to the granular nature of the data required to
provide these measures, varideshnologiehave been used in the context of diagnosis and safety
evaluation. These include cameras, LIDAR, and GPS, each with its documented advantages and
shortcomingg7)(8)(9)).

Additionally, obtaining surrogate safety measures for network screening purposes adds another
layer of complexity as massive amounts of data need to be derived in a systematic and continuous
manner. Previous works have investigated the use of GPS dattark screening purposes with
documented succef8). However, despite the latest research developments, a limited number of studies
have explored the use of computer vision and available city infrastructure (network of traffic video
cameras and management center facilities) to perform continuous andtaut@tveork screening.

Traditional network screening methods can only be performed at disdrietizevals on a scale of years.

With the use of connected city cameras, computer vision, and surrogate safety measures, network
screening can be performed odaily-, hourly, or minuteby-minutebasis if desired. This new approach
enables city engineers to monitor changes in traffic patterns and respond proactively to emerging safety
warnings with countermeasure improvements.

The objective of this paper is tatroduce the concept of automated and continuous monitoring
for road network screening using available infrastructure (connected cameras and cloud computing) and a
video analytics software solution referred to as BriskLUMINA. Using the wide networkfiod tameras
from cities, the proposed concept aims to leverage video footage to obtain useful data that can be
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searched, managed, and used to provide city road safety authorities with detailed information on traffic
volumes, speeds, conflicts and othavelr behaviors so that they can respamate rapidly to road safety
issues. This paper presents the concept using the City of Bellevue as an application environment and
using various traffic flow and safety metrics (such as traffic exposurespeedingnearmiss indicators
based on frequencies and rates, etc.). This screening provides the City with data on which locations
experience road safety issues for motorized and vulnerable roadarsepsirticular time, day, or traffic
movement.

LITERATURE R EVIEW

In recent years, many communitiegve beefooking beyond crash records for dalidaven safety
analysis. Studying collision data is reactive; safety evaluation takes place after collisions occur, making it
nearly impossible to achieve the goal of zero traffic deaths and serious injury colkgidit®nally, the
infrequent nature of traffic collisions necessitates years of observation to achieve statistical significance
d upto 5 oreven 10 years of data in the cases of studies involving single sites andvaffiowolume
locations, during wich theseocationsmay change significantly. Furthermore, it is wdtbcumented that
traffic crashes and injuries are undeported in many localities and there are societal barriers in using the
general public to test unknown safety countermeag®s

These concerns have led Vision Zero cities to use surrogatg sefasures to proactively
identify locations that have a high risk of crashes but where the risk has not yet resulted in actual crashes.

These surrogate safety metrics are collected from analysisetircad r s & t r aj e ectllisiony dat a

data. A wie variety of surrogate safety measures exist, including speed, delay, violations, deceleration
distribution, etc(6). Two very popular metrics of crashkiare divided into measures of proximity and
crash severity with tim#o-collision (TTC) and posencroachment time (PET) being measures of

proximity and speed, and with acceleration, object size, and collision angle being measures of severity.
TTC i smeifiegulres for two vehicles to collide if they continue at their present velocity and on the

s a me (flx PHT ds the time difference between when the first road user leaves the conflict point and
the second road useariaes at the conflict pointl2). TTC is computed continuously and depends on the
predicted motion of the two road users whereas PET requires the two road usersntelseaed paths

at some point. TTC is better suited for road users whose paths coincide for more than a single point of
their trajectories such as two road users originating from the same lane or merging into the same lane.

Many research groups havesearched and developed the applications of computer vision to
surrogate safety with promising results). The use of video analytics to obtain surrogate safety data has
been growing in populdsi due to the richness and granularity of the data that can be obtained. This
approach offers an alternative method of obtaining the desired metricsrifatii®lyinexpensive and
quick. Unlike traditional traffic safety evaluation methods, vidlase monitoring is detailed enough to
identify nearcrashes, classify road user types and their movements, and detect speeding infractions and
lane violations. Cameras capture higisolution data for all road users and modes of transportation
within the fied of view of the camera, compared to GPS sensor data, which only capture some of the road
userg(8)(9). Unlike LIDAR, cameras are relatively easy to deploy and maintain alongside a traditional
surveillance systert¥). Lastly, videos are easy for people to review and understand, unlike many other
data collection technologies that simply provide numerical data.

Despte recent developments in the literature on surrogate safety, most of the work has been
focusedon the proposition of new surrogate safety methods or the use of surrogate approaches for safety
diagnosis or beforafter studieg14)(15). Very little work has been published using laspale studies. In
particular, to ouknowledge no studies have been published using a large network of connected cameras
for proactivenetworkscreening which is the first step of the classi¢GaEMP.

METHODOLOGY
The implementation of the netwevkide continuous monitoring systemith connected cameras
consisted of severalstepsor t he met hodol ogy i mpl ementati on,

networkwasused as an application environmeitst, the locations at which the analysis was to be
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performed were selected. Theng tinalytics system was deployed at those locations and calibration was
performed. Finally, the numerical and visual data were generated and then analyzed.

Location Selection

The criteria for location selection were: 1) presence of a camera at the road segoangra)
having amappropriate field of view, 3ank with respect to thdigh Injury Network(16), and 4) variation
in land use, Wran density, and road geometry.

The City o f-to-dae camerainfrasfrigture gnd modern traffic management centers
ensured the smooth implementation of the system. The city has a network of high resolution connected
cameras at approximately 1@0its 200 intersections with fibre optic video streaming capabilities. All
cameras are mounted on traffic signals or poles between 20 and 40 feet high making them appropriate for
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this type of deployment.

The presence of a camera was the most importaettel criteria, narrowing down the number
of possible locations. Of these locations, the fields of view of all the cameras were assessed to eliminate

the | ocations where the camer ads fi

citerion was the inclusion of a vari
a variety of ranks within that networkhigh, medium, and low) and locations not on the Ii18).
Additionally, the intersections selected were also geographically spredittoughout the city, had
varying urban densities, and different land uses. Finally, the selection of intersections took into

consideration varying road geometry and infrastructure.

Video-based Traffic Monitoring Platform Deployment

After the locations of interest were finalized, visioased traffic monitoring was performed. This
process involves 1) livestreaming the video footage, 2) calibration and validation, 3paskbAl
processing and safety analysis, 4) quality control and data filtering, and 5) presentation of analytics results

on the dashboard. This process is depicted in Figure 1.

©©

w

1. Obtain Video 2. Calibration 3. Video-based 4. Quality 5. Analytics
Footage & Validation Al Processing Control Results on
& Safety Dashboard

Analysis

Figure 1 Video-analytics process for safety analysis

The video footage from the intecsmns of interest was live streamed. The intersection-meta
data, alongside a short sample of video footage, was then input on the platform to perform the calibration.
During the calibration process, a coordinate transformation is performed using the gawesind an
portion
and the relevant movements are defined. Once calibration is complete, result validation is performed to
ensure accurate results (propgpping and movement definition). Additionally, randorniifiute
manual traffic counts are compared to automatic counts to ensure count accuracy.

Once the validation process is complete, the video footage can be continuously processed. During
processingcomputer vision is used to detect, classifiyd track each of the road users in the traffic
stream. For this purpose, statiethe art algorithms have been developed and integrated in the
BriskLUMINA platform. (17) Once the detection and tracking algorithms are implemented, the platform

aeri al i mage for mapping purposes.
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automatically generaga set of traffic flow and safety outcomes. This includes graphs, heat maps, and
video clips as well as risk indicators at different levels (scenario andeatierslevel). The results are
then quality controlled to ensure a hilglvel of accuracyremoving any false positivesin the outcomes.
Once all of this is complete, the results are available on the online safety dashboard.

Output Analytics

The outputs from the videanalytics cloudlatform (BriskLUMINA) provide information on
traffic flow (volumes and speed measures) and safety (in the form efnigsgs and violations). The
outputs of the video analytics provide granular information on every single road user observed in the
10 videofootage as well as more aggregate data at the scenario and intersection level in the form of charts
11 and heatmaps. Some of the typical outputs of the analytics are provided in Figure 2.

OCO~NOOTS,WNPEF

Video Analytics

Outputs
Traffic Flow Safety
Volumes Speeds Near-Misses Speeding Violations
Road L:dsers by Turning Road User Median Event Data Event Data
ovement Speeds
Road Users by Type Road g::;dtsonflict Conflict Videos Speeding Videos
Averag:\]fzﬁlﬁ::l Daily Speed Distributions Conflict Heatmaps
: Speed Heatmaps &
Trajectory Images Stream Maps
13 _ _
14  Figure 2 Output analytics
15
16  The following data was used throughout the network screening process.
17 9 Traffic volumes: Data is available on every road user captured. The road users observed are
18 bound by the field of view of the camera. Depending on the intersection, this extends lfietween
19 to 30feet from the stop line of each approach. Each road user is identified as a road user type
20 (truck, bus, car, motorcycle, cyclist, pedestrian, etc.) and is associated with a movement (eg.
21 northbound through or East crosswalk). The data can benetitan more aggregate bases, such
22 as on a 15ninute, daily, site, or network basis.

6
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1 1 Speed measures: For each road user, speed measgasulated on a frame by frabasis.
2 Ultimately the speedectorassigned to each road usan be used to computeeanmedian
3 speed 83" percentile or other measures of speed usirg trajectorydata Justas with the
4 volume data, this data can be obtained for each road user or aggregated over various desired
5 parameters.
6 1 Nearmisses or conflict events: Nearissevents are quantified using PET as the indicgtor
7 optionally, also using TTQ Data is available for all events that involve the interactions of two
8 road users with a PET < B)for relevant scenarios. Relevant scenarios are scenarios involving
9 two road users whose trajedwintersect, excluding events involving two pedestriamshis
10 paper, events with PETs < 2 s danotedas critical conflictsCritical conflict rates were
11 calculated based on the total number of critical conflicts per 10,000 road users for the study
12 period.
13 1 Speeding events: Speeding violations or eventdefised by the traffic video analytics output,
14 occur when a road user is traveling above the posted speed limit for more than 20% of their
15 moving trajectory. Speeding is limited to motorized road users and uses the speed limits of
16 through movements as tassigned speed limit for the intersection. Angdriving above the
17 speed | imit wildl have an excessive speed value
18 speeding trajectory. In this paper, speeding incidence rates were calculated basé¢otain the
19 number of speeding road users per 10,000 road users for the week of the study period. Other
20 traffic violations can be extracted in an automated way but this application is limited to over
21 speeding.
22
23 Figures 3 ae show some sample platform outputstf@ week of analysis differentstudy

24 locations.Figure83a and b show the detected trajectories sl
25  Figure 3.3c shows a conflict heatmap, indicating the frequeintyre critical conflicts at specific

26 locations within the intersection. Figure 3.3d aggregates all the road user speeds to show a speed heatmap.

27 Lastly, Figure 3.3e shows a screenshot of a car exceeding the speed limit by more than 30 mph.

—— East Crosswalk

Nerth Crosswalk
—— South Crosswalk
—— Nerth Through
—— North Left Turn
—— North Right Turn
= South Through =
—— South Left Turn - K ¢ 3\ —— Motorcycle
—— South Right Turn || D —— Pedestrian

East Through i T h . —— Pick-Up Truck
—— East Left Turn N A N ; —— Single Unit Truck
—— East Right Turn \ s oF £ O — Work Van

West Threugh ¢ 2 .
—— West Left Turn

West Right Turn
—— West Crosswalk

—— Bicycle
— Bus
— Car
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32  c) Conflict heatmap d) Speed Heatmap
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e) Speedin violation ideo '

Figure 3 Sample analytics platform outputs

Analyses

In addition to looking athe rawdata indicators mentioned before (e.g.,fteguencyor rates of
conflicts or speeding events), a statistical regression model can be used to estimate the frequency of
events for each intersection after controlling for other factors. In this @aseltilevel regression model
is used to perform a networkide analysis. Multiple geometric and ngaometric variables were
considered as explanatory variables when fitting these models. The explanatory variables include urban
density (high or mediumJ)and use (commercial or residential), whether or not a school is present within
less than 0.125 miles from the intersection, road user types (car driver, bus or truck operator,
motorcyclist), road user movement (through, left turn, or right turn), geates norprotected left turns,
pedestrian traffic phasing, number of lanes, lane width, crosswalk width, presence of bike infrastructure
(dedicated bike path, shared bike path, both, or neither), time of the day, and days of the week.

The multilevel regession analysis was estimated with intersection fixed and random effects using
the independent variables as surrogate safety measures.

I o e ET o | O, i=1, 2,é..,n
Where:
yi T surrogate safety measure of interest forisiter all conflicts
xij I regressor for explanatory variable
b1 coefficient for explanatory variabje
| Z.fixed effects error for sitée
Wi random error of the regression estimate

Using the expected frequency of events at the site level, the sites under study were ranked to identify the
most dangerous locations according to the specific indicator.

APPLICATION

Between 2009 and 2018, 66% of all fatal and sefiousy collisions in the City of Bellevue
occurred along just 9% of stre€li). Vulnerable road users (pedestrians and cyclists) made up 5% of all
collisions during lis time but comprised 46% of all serious injuries and fatalities. An analysis of the
collisions indicated that the following five road user behaviors contributed to 70% of all fatal and serious
injuries: driverds f ai ltognrardrightal-way {o a inadorist, drives pedest r i
distraction, intoxication, and speedifi®). In response to these road safety concerns, the City of
Bellevue passed a Vision Zero resolution in 2015 to strive to elimin#fie tedalities and serious
injuries by 2030. In 2019, the City of Bellevue conducted a citywide network screening analysis to better
understand the factors that impact the safety of its transportation system and leverage this insight to
identify improvemats and evaluate outcomes. Camera footage was analyzed to obtain data about
surrogate safety indicators including road user speeds anthissms. Results are used to validate road
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improvements, determine higlsk locations, and determine the most sever&licts and interactions at
an intersection.
For the implementation of the proposed approach, a sample of 40 intersections were selected, from
t he Cityds 2Fylre 4idepicts thesstudyintersectmnke selection was based off of
theaforementioned factors:
All intersectionswere signalized with a connected camera with the approgigddeof view.
From those, 34 are folegged intersections, 5 are thilegged, and 1 is fiwegged.
Most of the intersections (31) were part of the High Injury Network.
The majority of the intersections (31) were not in the downtown area, defined here as the area
bordered by Main St. & NE 12 and 100th Ave & 112th Ave.
Priority was given to intersectigriocated in commercial areas given the high pedestrian
presence. In the sample, 28 intersections were located in commercial areas as opposed to
residential areas
1 28 intersections were in medium density locations (suburbsdxgtores, and/or factorjes
while the rest were in high density locations (mattiry dwellings and/or businesses).

= = =4 -4 =9

Figure 4 Study locations

Results
Video data was processed using the analytics platform defaréidr For each intersection, 112
hours of video daté6AM to 10PM)were collected and automatically processed for a total of 4,500 hours
of video footage. This corresponds to seven consecutive days of data from September 13th to 19th, 2019.
Once data was streamed to the cloud analytics platform, each csasecalibrated and detection/
tracking algorithms were implemented. Thiasfollowed by the generation of traffic flow and safety
analytics metrics. A multitude of analyses carpbdormedon the data obtained; however, the section
will provide a set obutcomes for illustrative purposes.

4.1.1 Volumes

During the week of data collection, over 8.25 million road users were observed. From the total,
97.3% were motorizerbad users and 2.7% were vulnerable road users (2.6% pedestrians and 0.1%
cyclists). kgures5 ac show the concentration of each road user type across the network.
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Figure 5 Concentration of each road useacross network

umes across network

The average total vehicular volume per intersections was between 0.2 and 0.25 million for the
entire week of analysis. The 2 intersections with the highest volumes, at around 0.4 million, were 112th
Ave & NE 8th St and 116th Ave & NE 8th.Sthese high volumes were observed as both intersections
are adjacent to interstate ramps. Pedestrian volumes were less uniform throughout the study locations.
Over half of all the pedestrian volumes observed were at four downtown, high density intessectio

10
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(Bellevue Way & NE 8th St, 108th Ave & NE 8th St, 108th & NE 4th St, and Bellevue Way & Main St).
For more than twahirds of the selected locations, pedestrian volumes made up less than 2% of the total
traffic. Cyclist volumes were very low throughait study intersections, and cyclists made up more than
1% of road user volumes at only 2 intersections (116th Ave NE & Northup Way and 100th Ave & Main
St).

Speeds

The speed for all the road users was obtained on a road user basis and was aggregated for a
networkwide analysis by road user type and movement type. This section looks at the temporal variation
10 inthrough vehicular speeds by land use, speed limit, @aséction location along the HIN. Other
11 analyses cabe performedby looking at different road users and/or turning movements and other metrics
12  such as 85percentile speeds, free flow speeds, coefficient of variation etc.
13 Figures G-c display the temporafariation of through vehicle speeds with respect to different
14 factors. On a networlide basis, through movement speeds were relatively constant throughout the day.
15 Vehicles at residential locations had higher speeds and fluctuations compared to conouaticiak. As
16  would be expected, speeds were lower at intersections with posted speed limits of 30 mph compared to
17  intersections with posted speed limits of 35 mph. Fluctuations in speeds throughout the day were slight
18 for both posted speed limits and it appear to have a clear correlation with the time of day. Speeds
19 along the HIN were observed to be lower than speeds not on the HIN. This is due to speeds and speeding
20 limits being higher at residential land use and-thiods of the selected locationst on the HIN were in
21  residential areas.
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Conflict Frequency and Rates
Nearmisses
The safety indicator used to quantify neasisses was PET. Approximately 1.5 million events
with PETs < 10s were observed across the week of analysis. Fighiosvs the distribution of the PET
values of these events. For this paper, data will be protiaeed on the number of conflicts with a PET
< 2s. This value was selected because it is slightly higher than 1.5s, the average human reaction which is
a common threshold use to identify conflicts with a relatively gk level,(18)(19) to ensure that no
conflicts with a slightly higher reaction time are not overlooked. These will be called critical conflicts
hereon. Twenty thousand (1.4% of all interactions) of these evergesolyserved, while more than 80.7%
of interactions had PETs between 5 and 10 seconds which is considered to be safe passage. As would be
expected, the distribution of conflicts/interactions acrosshitesholdvalues follows a pyramidal shape.

1.4%

4.8%

m Critical Conflicts (PET <2 s)
Minor Conflicts (2 s <PET <35s)
Potential Conflicts (3s <PET <5 5]
Interactions (5 s < PET <10 s)

Figure 7 Distribution of PET value of all events

Based on the video analytics data, several ranking criteria could be derived for identifying the
most prone intersections for safety improvements, this includes critical conflict rates defined as the
number of cofiicts observed with PETs < 2s per 10,000 road users for the week of analysis 8Figure
presents a map showing the concentration of the total number critical conflict rates per intersection. This
map is useful for identifying those intersections with dtirgquency of critical conflicts. The map
indicates that 7 intersections had more than 150 critical corddtis

12
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Figure 8 Concentration of critical conflicts across network

When exploring conflicts by mode, vehicular conflicts made up 97.5% ofitial conflicts
observed. Pedestrian conflicts made up only 1.9% of all these conflicts, and cyclist conflicts made up
0.6%. Even though cyclists were involved in the least number of critical conflicts, they had the highest
critical conflict rates. Whe comparing the critical conflict rates for each road user, cyclists were 6.5
times more likely to be involved in a conflict than a pedestrian and 8.7 times more likely to be involved in
a conflict than a vehiclédditionally, pedestrians were 1.3 timeone likely to be involved in a conflict
than a vehicle.

Depending on the countermeasurepdaiciesin place, hotspot intersections with the highest
frequency of a specific conflict scenario can be identified. Figlees indicate the frequency of the
main conflict scenarios and their frequency for each road user, on a néasisk The vehicular céitts
were predominantly between through and left turning vehicles. Additionally, pedestrian conflicts with left
turning vehicles were also most common. The most common cyclist conflicts were between cyclists and
through vehicles.

O.GTol.l%
Pedestrians &
Through & Through Drivers
Through Vehicles 26.1%
Through & Left = Pedestrians &
Turning Vehicles ‘ Left Turning
64.3% Drivers
= Through & Right 9.6% )
i i Pedestrians &
0,
98.3% Turning Vehicles o .
Drivers

a) Vehicular conflict scenarios b) Pedestrian conflict scenarios
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